Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

The Prediction for Adjustable Ability of Electric Vehicle Aggregator Based on Deep-Belief-Network

2023-04-11
2023-01-0062
In recent years, one of the keys to achieving energy conservation and emission reduction and practicing sustainable development strategies is the wide-area access of large-scale electric vehicles. The charging behavior of large-scale electric vehicles has brought great challenges to the load management and adjustment capacity determination of the power system. Therefore, the prediction of adjustable ability of electric vehicle aggregator based on deep-belief-network is proposed in this paper. First of all, this paper selects the indicators related to the load of the electric bus station: including the arrival time, departure time, and daily mileage of the electric vehicle, from which the SOC variation trend and accurate charging demand of the single electric vehicle are obtained.
Technical Paper

The Pendulum Motion Measured Digital Photogrammetry for a Centrifugal Pendulum Vibration Absorber

2023-04-11
2023-01-0124
Centrifugal Pendulum Vibration Absorber (CPVA for short) is used to absorb torsional vibrations caused by the shifting motion of the engine. It is increasingly used in modern powertrains. In the research of the dynamic characteristics of the CPVA, it is necessary to obtain the real motion of the pendulum to compensate the fitting performance of mathematical model. The usual method is to install an angle sensor to measure the movement of the pendulum. On the one hand, the installation of the sensor will affect its movement to a certain extent, so that the measurement results do not match the actual motion. On the other hand, the motion of the pendulum is not only the rotational motion around the rotational axis of the CPVA rotor, but also has translation relative to it. As a result, it is difficult to obtain accurate motion only by the angle sensor. We proposed a non-contact centrifugal pendulum motion measurement method.
Technical Paper

The New China Automotive Technology and Research Center Aerodynamic-Acoustic and Climatic Wind Tunnels

2024-04-09
2024-01-2541
The China Automotive Technology and Research Center (CATARC) has completed two new wind tunnels at its test centre in Tianjin, China: an aerodynamic/aeroacoustic wind tunnel (AAWT), and a climatic wind tunnel (CWT). The AAWT incorporates design features to provide both a very low fan power requirement and a very low background noise putting it amongst the quietest in the automotive world. These features are also combined with high flow quality, a full boundary layer control system with a 5-belt rolling road, an automated traversing system, and a complete acoustic measurement system including a 3-sided microphone array. The CWT, located in the same building as the AAWT, has a flexible nozzle to deliver 250 km/h with an 8.25 m2 nozzle, and 130 km/h with a 13.2 m2 nozzle. The temperature range of the CWT is -40 °C to +60 °C with a controlled humidity range of 5% to 95%. Additional integrated systems include a variable angle solar simulator array, and a rain and snow spray system.
Technical Paper

The Multi-Objective Optimization Design of Hard Point Parameters for Double Wishbone Independent Suspension

2023-04-11
2023-01-0127
There are often a large number of design variables and responses in suspension hard point optimization design. The traditional optimization strategy integrating heuristic algorithm and simulation model is not applicable due to its low efficiency. To solve optimization problems with huge number of design variables and responses, a multi-objective optimization framework combined heuristic optimization algorithm with multi-objective decision-making method is developed. Specifically, the multi-objective optimization was performed by dividing the problem into two independent sub-problems of multi-objective optimization and multi-objective decision-making. Further, to reduce the number of sample points required for building a surrogate model, a two-stage multi-objective optimization is proposed.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

The Effect of Unfine-Tuned Super-Resolution Networks Act on Object Detection

2020-02-24
2020-01-5034
In order to explore approaches for improving object detection accuracy in intelligent vehicle system, we exploit super-resolution techniques. A novel method is proposed to confirm the conjecture whether some popular super-resolution networks used for environmental perception of intelligent vehicles and robots can indeed improve the detection accuracy. COCO dataset which contains images from complex ordinary environment is utilized for the verification experiment, due to it can adequately verify the generalization of each algorithm and the consistency of experimental results. Using two representative object detection networks to produce the detection results, namely Faster R-CNN and YOLOv3, we devise to reduce the impact of resizing operation. The two networks allow us to compare the performance of object detection between using original and super-resolved images. We quantify the effect of each super-resolution techniques as well.
Technical Paper

The Dynamic Electromagnetic Distribution and Electromagnetic Interference Suppression of Smart Electric Vehicle

2019-04-02
2019-01-1061
Smart electric vehicles need more accurate and more timely information as well as control than traditional vehicles, which depends on great environmental sensors such as millimeter-wave radar. In this way, the electromagnetic compatibility of whole vehicle would confront more serious challenges because of its high frequency range. Thus, this paper studies the electromagnetic distribution and electromagnetic interference suppression of smart electric vehicles with the followings. Firstly, the millimeter wave radar is modeled and optimized. Micro strip patch antenna, with small size, light mass and low cost, is used as array element of antenna. Millimeter wave radar is modeled and simulated step by step from array element to line array to planar matrix. Then the Cross Shape - Uniplanar Compact - Electromagnetic Band Gap (CS-UC-EBG) structure is deployed to optimize its electromagnetic characteristics, based on finite time domain difference model theory.
Technical Paper

The Design and Evaluation of EMB Actuator Scheme

2017-09-17
2017-01-2509
Electromechanical Braking System (EMB) stops the wheel by motor and related enforce mechanism to drive braking pads to clamp the friction plate. It is compact in sized as well as faster in response, which solves the issue of potential leakage and slows response of traditional hydraulic brake system. The institutions at home and abroad have put forward all kinds of new structural schemes of EMB. At present, there are various EMB structural schemes, but the analysis and evaluation of these schemes are relatively few. In this paper, on the basis of a large number of research, the EMB actuator is modular decomposed according to function ,then the parametric 3D model library of each function module is established. According to brake requirements of the target vehicle, a development platform is set up to match EMB actuator structure scheme quickly.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

Temperature Difference Control Strategy and Flow Field Uniformity Analysis of Ni-Mh Power Battery Package

2012-09-24
2012-01-2018
The nonuniformity property of the temperature field distribution will not only affect on the battery charging and discharging performance but also its lifetime. In this paper the elementary structural design is implemented for Ni-Mh battery package and the corresponding test platform is constructed from the point of view of temperature difference control strategy, the test results show that the present structural design schemes can effectively restrain temperature difference enlargement among the battery stacks. Through the application of adopting the flow field uniformity method to control temperature difference, and flow field optimization inside the battery package, it is found that the flow field velocity change quantity ΔV is gradually reduced as the increase of the afflux hood angle Ak and air vent width Da, and the difference of battery temperature is relatively lower, which denoting that the corresponding relationship can be created based on test data.
Technical Paper

System Evaluation Method for Two Planetary Gears Hybrid Powertrain under Gray Relational Analysis Based on Fuzzy AHP and Entropy Weight Method

2020-04-14
2020-01-0430
Millions of configurations of power-split hybrid powertrain can be generated due to variation in number of planetary-gear sets (PG), difference in number, type and installation location of shift actuators (clutches or brakes), and difference in connection positions of power components. Considering the large number of configurations, complex structures and control modes, it is vital to construct an appropriate multi-index system evaluation method, which directly affects the requirement fulfillment, the time and cost of 2-PG system configuration design. Considering one-sidedness (dynamics and economic performance), simplicity (linear combination of indicators) and subjectivity (relying on expert experience) of previous system evaluation method of 2-PG system design, a more systematic evaluation method is proposed in this paper. The proposed evaluation system consists of five aspects, involving dynamic, economy, comfort, reliability and cost, and more than 20 indexes.
Technical Paper

Subsection Coordinated Control during Mode Transition for a Compound Power-Split System

2019-04-02
2019-01-1214
The power-split transmission is considered as one of the major technologies for hybrid electric vehicles. It utilizes two electric motors/generators (MGs) and a power-split device (planetary gear sets) to make the speed of internal combustion engine (ICE) independent from the vehicle speed, and in that way enables the ICE to operate in a high-efficiency region under all driving cycles. In this study, a compound power-split hybrid system integrated with a two-planetary gear train is proposed. To suppress the vehicle jerk intensity and improve the driving comfort during the transition from EV (Electric Vehicle) mode to HEV (Hybrid Electric Vehicle) mode, a torque coordinated control strategy is derived. Based on the analysis of mode transition in different sections, mathematical models of each section are deduced, respectively. Then a model-based torque coordinated control method is used to solve out the target output torques of ICE, MGs and brakes in each mode transition phase.
Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Technical Paper

Study on the Effects of Fuel Reforming on Fuel Properties and the Following Potential Influences on ICEs

2020-04-14
2020-01-1315
A high temperature and no oxygen atmosphere fuel reforming has been proposed for the purpose of exergy saving by theoretical analyzing the detailed exergy loss events of combustion process, the correctness and feasibility of this fuel reforming have been verified through experiments. The exergy behaviors of high temperature and no oxygen atmosphere fuel reforming have been extensively studied, and many benefits had been observed including: (1) simplifying the reforming device where catalysts are not necessary; (2) improving the total chemical exergy while effectively converting large moleculae to small moleculae; (3) improving the mixture’s ratio of specific heat that can promote work-extraction; and (4) lengthening the ignition delay that buys time for better mixing process. All of these benefits are conducive to a better organized HCCI combustion that may improve the engine second law efficiency.
X